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Abstract. Working in the light-cone gauge, we find a simple procedure to calculate the autonomous one-
loop Q2 evolution of the twist-three part of the nucleon gT (x, Q2) structure function in the large-Nc limit.
Our approach allows us to investigate the possibility of a similar large-Nc simplification for other higher-
twist evolutions. In particular, we show that it does not occur for the twist-four part of the f4(x, Q2),
g3(x, Q2) and h3(x, Q2) distributions. We also argue that the simplification of the twist-three evolution
does not persist beyond one loop.

Feynman’s parton model of incoherent parton scatter-
ing provides a transparent picture of what happens in a
broad class of high-energy scattering processes. Modulo
field theoretical logarithms, the parton model can be de-
rived in quantum chromodynamics (QCD) in the form of
factorization theorems [1]. Better yet, QCD allows us to
go beyond the naive parton model by consistently includ-
ing the effects of the parton transverse momentum and
coherent parton scattering. A simple example of coherent
parton scattering is the interference of a single quark with
a quark and a gluon in a nucleon target. To describe this
phenomenon, it is necessary to introduce a three-parton
light-cone correlation function

Mα(x, y,Q2) = (1)∫
dλ

2π
dµ

2π
eiλxeiµ(y−x)〈PS|ψ̄(0)iDα(µn)ψ(λn)|PS〉 ,

where n is a light-cone vector, ψ a quark field, and |PS〉
the nucleon state. The general parton correlations involve
more than one Feynman variable, and hence their scale
(Q2) evolution is more complicated than the usual Dok-
shitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolu-
tion equations for the Feynman parton densities. Tech-
nically, the complication arises from the so-called higher-
twist part of the correlations.

Experimental study of parton correlations is challeng-
ing for a number of reasons. One is the lack of processes in
which all Feynman variables in a parton correlation can be
kinematically controlled. For instance, in polarized lepton-
nucleon deep-inelastic scattering (DIS), one can measure
the structure function gT (x,Q2). In the Bjorken limit,
gT (x,Q2) is related to a y-moment of the above corre-
lation function. Since a moment of Mα(x, y,Q2) does not
evolve autonomously, knowing the entire gT (x,Q2) at one
scale is not sufficient to calculate it at another. This makes
an analysis of gT (x,Q2) data at different scales difficult.

Several years ago, Ali, Braun, and Hiller (ABH) [2]
made a remarkable discovery that in the limit of the large
number of color Nc, the twist-three part of gT (x,Q2) does
evolve autonomously at the one-loop level. The result has
since been widely used in model calculations and analy-
ses of experimental data [3]. More recently similar results
have been found for the evolutions of other twist-three
functions hL(x,Q2) and e(x,Q2)[4]. Given the practical
importance of the ABH result, a deeper understanding of
the large Nc simplification is clearly desirable. Moreover,
it is interesting to investigate the possibility of a simi-
lar simplification at two or more loops and for analogous
twist-four correlations.

In this paper we calculate directly the large-Nc evolu-
tion of gT (x,Q2) in the light-cone gauge. We find that the
autonomy of the twist-three evolution arises from a spe-
cial property of one particular Feynman diagram. Since
this property is independent of the γ-matrix structure of
the composite operators inserted, the ABH result general-
izes immediately to the twist-three parts of hL(x,Q2) and
e(x,Q2). Unfortunately, for various reasons we shall ex-
plain, there is no similar large-Nc simplification for twist-
four functions, nor for g2(x,Q2) beyond one loop.

We begin our discussion with a brief introduction to
the gT (x,Q2) structure function of the nucleon. In inclu-
sive DIS, all information about the nucleon structure is
summarized in the following hadron tensor,

Wµν(P, S, q) =
1
4π

∫
d 4ξ eiq·ξ〈PS|[Jµ(ξ), Jν(0)]|PS〉 ,

(2)

where Jµ =
∑

q e
2
qψ̄qγ

µψq is the electromagnetic current
and q is the spacelike virtual photon momentum. The anti-
symmetric part of the hadron tensor,W [µν], is polarization-
dependent and can be characterized in terms of the two
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structure functions g1(xB , Q
2) and g2(xB , Q

2):

W [µν] = −iεµναβqα

(
Sβ
g1(xB , Q

2)
ν

+ [νSβ − (S · q)Pβ ]
g2(xB , Q

2)
ν2

)
, (3)

where we have chosen the kinematic factors so that g1(xB ,
Q2) and g2(xB , Q

2) survive the scaling limit Q2 = −q2 →
∞, ν = P ·q → ∞ and xB = Q2/2ν = finite. In Feynman’s
parton model, g1(xB , Q

2) is related to the parton helicity
density ∆qa(x,Q2)

g1(xB , Q
2) =

1
2

∑
a

e2a
[
∆qa(xB , Q

2) +∆qa(−xB , Q
2)
]
,

(4)
where ea is the electric charge and a sums over light quark
species.

The structure function g2(xB , Q
2), however, does not

have a simple parton model interpretation. Defining gT (xB,
Q2) = g1(xB , Q

2) + g2(xB , Q
2), an operator-product-ex-

pansion analysis yields [5]

gT (xB , Q
2) =

1
2

∑
a

e2a
(
∆qTa(xB , Q

2) +∆qTa(−xB , Q
2)
)
,

(5)
where we have neglected all power and radiative correc-
tions and

∆qTa(x,Q2) = (6)
1

2M

∫
dλ

2π
eiλx〈PS⊥|ψ̄a(0)γ⊥γ5ψa(λn)|PS⊥〉 .

The trouble with a parton model interpretation of∆qTa(x,
Q2) can easily be seen in light-front quantization in which
only the “good” component of the Dirac field ψ+ = P+ψ
has a simple Fock expansion (P± = γ∓γ±/2, γ± = (γ0 ±
γ3)/

√
2), whereas the “bad” component ψ− = P−ψ is

constrained by the following equation of motion

ψ−(λn) = −1
2

1
in · ∂ 6ni 6D⊥(λn)ψ+(λn) . (7)

[In some sense ψ− represents a quark-gluon composite.]
Unlike ∆qa(x,Q2), ∆qTa(x,Q2) contains a bad compo-
nent because of the γ⊥.

For the same reason, the scale evolution of∆qTa(x,Q2)
is now more intricate than that of ∆qa(x,Q2). Its n-th
moment is written∫ 1

−1
∆qTa(x,Q2)xndx = (8)

1
2M

nµ1 · · ·nµn
〈PS⊥|θ⊥(µ1···µn)|PS⊥〉,

where θσ(µ1···µn) = ψ̄γσiD(µ1 · · · iDµn)ψ, with (µ1 · · ·µn)
indicating symmetrization of the indices and removal of
the traces. The θ-operator contains both twist-two
θ(σµ1···µn) (totally symmetric and traceless) and twist-
three θ[σ(µ1]µ2···µn) (mixed symmetric and traceless) con-
tributions, where [σµ1] denotes antisymmetrization. It

( a ) ( b )

Fig. 1a,b. Two and three-point 1PI Feynman diagrams con-
tributing to the evolution of θn in the large Nc limit

turns out, however, that for a given symmetry structure
there are multiple twist-three operators. In fact, a com-
plete basis of these operators was first identified in [6],

Rn
i =

ψ̄iD(µ1 · · · iDµi−1(−ig)FσµiiDµi+1 · · · iDµn−1γµn)γ5ψ

Sn
i =

ψ̄iD(µ1 · · · iDµi−1gF̃σµiiDµi+1 · · · iDµn−1γµn)ψ , (9)

where i = 1, ..., n− 1. The operator θ[σ(µ1]µ2···µn) is just a
special linear combination of them,

θ[σ(µ1]µ2···µn) =
1

2(n+ 1)

n−1∑
i=1

(n−i)(Rn
i −Rn

n−i+S
n
i +Sn

n−i).

(10)
The anomalous dimension matrix in the above operator
basis was first worked out by Bukhvostov et al. and later
reproduced by a number of authors with different meth-
ods[7]. The result is what one would generally expect. To
evolve the matrix element of θ[σ(µ1]µ2···µn), it is not enough
just to know it at an initial scale—one must know all the
matrix elements of Wn

i = Rn
i −Rn

n−i + Sn
i + Sn

n−i there.
By studying the anomalous dimension matrix in the

large Nc limit, Ali, Braun and Hiller found that the eigen-
vector corresponding to the lowest eigenvalue is just the
linear combination of twist-three operators on the right-
hand side of (10). In other words, the twist-three part of
∆qTa(x,Q2) evolves autonomously in this limit. To better
understand ABH’s result, we calculate the large-Nc evo-
lution of ∆qTa(x,Q2) directly. We start with the mixed-
twist operator θσ(µ1µ2···µn) in (8) and look for possible di-
vergences when inserted in multi-point Green’s functions.
To reduce the number of Feynman diagrams, we choose
the light-cone gauge A+ = 0 and take the ⊥ + · · ·+ com-
ponent of the θ-operator. Let’s call the resulting operator
θn ≡ ψ̄γ⊥γ5(i∂+)nψ, and its twist-two and twist-three
parts θn2 and θn3, respectively. The Feyman rule for θn

is simply γ⊥γ5(k+)n, where k is the momentum of the
quark.

By light-cone power counting, we need only consider
two- and three-point functions. Since the external lines
carry color, we must ask what type of diagrams dominates
the large Nc limit. The simple rule we find is that when
all external lines are drawn to one point (infinity), the
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( b )( a ) ( c )

Fig. 2a–c. Four-point 1PI Feynman diagrams contributing to the evolution of Ô in the large Nc limit

planer diagrams are leading. All one-particle-irreducible
(1PI) leading diagrams with one θ insertion are shown in
Fig. 1.

The ultraviolet divergences in the two point Green’s
function can obviously be subtracted with the matrix el-
ement of θn itself. The only diagram in which the diver-
gences may not be subtracted by θn is Fig. 1b. An explicit
calculation shows that the ultraviolet divergences corre-
spond to the following local operator:

1
2
CA

g2

8π2 lnQ2 (11)

·
[
− 1

(n+ 2)

n−1∑
i=0

ψ̄ 6nγ5(i∂+)iiD⊥(i∂+)n−1−iψ

+

(
n+1∑
i=1

1
i

− 1
2(n+ 1)

)(
ψ̄i6D⊥ 6nγ⊥γ5(i∂+)n−1ψ

+ψ̄(i∂+)n−1γ⊥γ5 6ni6D⊥ψ
)]

,

where we have neglected the contributions of light-cone
singularities which will be cancelled eventually. Notice that
the first term is present in the twist-two operator

θn2 =
1

n+ 1

(
ψ̄γ⊥γ5(i∂+)nψ (12)

+
n−1∑
i=0

ψ̄γ+γ5(i∂+)iiD⊥(i∂+)n−i−1ψ

)
,

and the remaining two terms can be converted to θn by
using the equation of motion in (7). Thus we easily arrive
at the ABH conclusion that θn3 evolves autonomously in
the large-Nc limit.

Including the contribution from Fig. 1a as well as the
one-particle-reducible ones that cannot be neglected in the
light-cone gauge, we obtain the following equation,

dθn

d lnQ2 = (13)

αs(Q2)
2π

Nc

2

[
n+ 1
n+ 2

θn2 +

(
−2

n+1∑
i=1

1
i

+
1

n+ 1
+

1
2

)
θn

]
.

Separating out the twist-two and twist-three parts, we not
only recover the well-known twist-two evolution, but also
the twist-three result

dθn3

lnQ2 =
αs(Q2)

2π

(
−2

n+1∑
i=1

1
i

+
1

n+ 1
+

1
2

)
θn3, (14)

which is identical to the result in [2].
It is quite clear that the i-independence of the coeffi-

cients in the sum of (12) is the key for the autonomous
evolution of θn3. On the other hand, this property is not
totally unexpected if one inspects Fig. 1b more closely. In-
terpreting this diagram in the coordinate space, we see
that the internal gluon propagates homogeneously from
one quark to the other. By homogeneously, we mean that
at any point along the path of the propagation, the gluon
behaves exactly the same way, except, of course, at the
points where the gluon and quarks interact. Now the spa-
tial location of the interaction with the external gluon
determines the number of derivatives before and after the
gluon field in the subtraction operator. Since the inter-
nal gluon propagation is homogenous, different locations
of the triple-gluon vertex should produce similar physi-
cal effects. Therefore, the coefficients of the subtraction
operators ψ̄ 6 nγ5(i∂+)iiD⊥(i∂+)n−1−iψ should be inde-
pendent of i. On the other hand, the two extra terms in
(12) correspond to the triple-gluon vertex just next to the
external quark lines, where the homogeneity is lost.

Since the homogeneous property of the internal gluon
line is independent of the gamma matrix structure of the
operator inserted, we conclude that the other twist-three
distributions e(x,Q2) and hL(x,Q2) evolve also autono-
mously in the large Nc limit. A quick calculation confirms
the evolution equations found in [4].

Encouraged by the success of the above approach, we
apply it to the analogous twist-four evolution. In [8], the
three one-variable distributions f4(x,Q2), g3(x,Q2) and
h3(x,Q2) are shown to contain twist-four. For example,
f4(x) is defined as

f4(x) =
1
M2

∫
dλ

2π
〈P |ψ̄(0)γ−ψ(λn)|P 〉 . (15)
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It was shown in [9] that f4(x,Q2) contributes to the 1/Q2

term of the longitudinal scaling function FL of the nucleon

FL(xB , Q
2) =

2x2
BM

2

Q2

∑
a

e2af4a(xB , Q
2) , (16)

where we have neglected higher-order radiative correc-
tions. Here, autonomous evolution of f4(x,Q2) would sim-
plify the analysis of FL data immensely.

In the large Nc limit, we consider one insertion of the
operator Ô = ψ̄γ−(i∂+)nψ into two-, three- and four-
point Green’s functions. At one-loop order, the 1PI two-
and three-point diagrams are identical to those in Fig. 1
and the 1PI four-point diagrams are shown in Fig. 2. Only
the three and four point diagrams can potentially destroy
the autonomous evolution of Ô. Let us start with Fig. 2a.
One of the divergent contributions from this diagram in-
troduces the following local subtraction∑

i

ψ̄i 6D⊥ 6n(i∂+)ii 6D⊥(i∂+)n−i−2ψ + h.c. (17)

where all the coefficients are independent of i again be-
cause of the homogeneity of the gluon propagator. Using
the equation of motion, we can write this as∑

i

ψ̄(i∂+)ii 6D⊥(i∂+)n−i−2ψ + h.c. (18)

Since this operator cannot be reduced to either the twist-
two or twist-four part of Ô, the evolution of the latter
cannot be autonomous unless this contribution is cancelled
by other diagrams. The only other diagram containing the
same divergence structure is Fig. 1b with an insertion of
Ô. Unfortunately, our explicit calculation did not produce
this cancellation. The same phenomenon occurs for the
twist-four part of g3(x,Q2) and h3(x,Q2).

Thus, the large Nc simplification seems to happen only
for the evolution of the twist-three part of gT (x,Q2),
hL(x,Q2) and e(x,Q2). Does it happen for them at two
and higher loops? In Fig. 3, we show two examples of Feyn-
man diagrams that we suspect break the autonomy of the
θ3n-evolution, i.e., they may contain divergences that can-
not be subtracted by θn2 and θn3 only. Our suspicion is
based on the inhomogeneity of the gluon progator. The
internal gluon that propagates from one quark to another
has different wavelengths in the different parts of the prop-
agation. Its interaction with the external gluon is different
at different spatial locations. Thus the subtraction oper-
ators have different coefficients depending on the number
of derivatives before and after the external gluon field. An
explicit calculation of Fig. 3a confirms our suspicion.

This leaves us with only one possibility for autonomous
two-loop evolution of θn3: the unwanted structures cancel
in the sum of all large-Nc two-loop diagrams. Calculating
all those diagrams is a big task. However, even without
an explicit calculation, we do not expect the cancellation
to happen. The fundamental reason is that large Nc rep-
resents only a selection of a subset of Feynman diagrams,
whereas the result of an individual diagram is indepen-
dent of the large-Nc limit. Cancellations of a structure do

( a ) ( b )

Fig. 3a,b. Some two-loop 1PI Feynman diagrams that might
break the autonomy of the θn in the large Nc limit

not happen among Feynman diagrams unless there is a
symmetry.

Therefore we conclude that the autonomy of one-loop
evolution for a set of special twist-three distributions at
large Nc seems accidental. In the light-cone gauge, it can
be easily traced to a special property of Fig. 1b. The sim-
plification does not happen for the analogous twist-four
distributions at one loop, nor for those twist-three distri-
butions at two or higher loops. Nonetheless, the discov-
ery of Ali, Braun, and Hiller remains as a significant step
forward in the study of the g2(x,Q2) structure function.
Without the autonomous one-loop evolution, an analy-
sis of experimental data on the twist-three contribution
would be severely constrained.
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